Measuring and Ranking the Running Back and Wide Receiver Draft Class of 2015
Every year in February, a group of NFL front office personnel, scouting organizations, media members, and the nation's top collegiate athletes get together for the NFL Combine. In this weeklong event, players hoping to make the leap to the NFL are measured, analyzed, and scrutinized by the movers and shakers of the league. Yet, many have wondered whether these movement tests performed in sterile conditions -- in shorts and t-shirts, free of helmets and pads -- have any validity in predicting future NFL performance.
With a large coffee in one hand and the combine results for all 1,091 wide receivers and running backs from the past 16 seasons (courtesy of mockdraftable.com) on my computer in front of me, I decided to tackle the task of assimilating the vast metrics measured at the combine for each player and converting this information into an actionable predictor of NFL potential.
The Math
When we glance at combine numbers, our intuition gives us a general sense of a "good" combine performance versus a "bad" one. But these are subjective measures. Can we define these in a quantitative manner? First, I asked, "What exactly constitutes a 'good' combine performance? What separates the 'good' from the 'great', and the 'great' from the 'elite'?"
I decided to define the quality of an athlete's combine performance as the fold increase above what would be expected for an NFL hopeful of that athlete's size to produce. I chose to normalize everything to size to take into account a condition that makes intuitive sense: if two athlete's both run a 4.4 40-yard dash, but one athlete weighs 265 pounds and the other weights 190 pounds, we would consider the performance by the 265 pound athlete much more impressive. Therefore, I thought that rather than compare performances at face value, our analysis should somehow factor in player size.
So from the large set of historical data at my disposal, I was able to derive a set of equations to determine an athlete's expected combine numbers based on that athlete's size (specifically, weight), which served as the baseline from which I then assessed that player's actual combine performance:
Estimated 40 = (.0022 x Weight) + 4.0726
Estimated Bench = (.1313 x Weight) - 9.825
Estimated Vertical = (-.0102 x Weight) + 37.264
Estimated Broad = (-.0244 x Weight) + 124.08
Estimated 3-Cone = (.004 x Weight) + 6.1036
Estimated 20ss = (.0026 x Weight) + 3.688
So a fair question to ask would be: "Just how valid are these equations in predicting combine performance?" To test this, I took the average weight of all 1,091 running backs and wide receivers (206.6 pounds) and calculated what the combine performances would be for players of this size. I then compared these numbers to the actual average of the combine performances for all players from the last 16 seasons weighing either 205, 206, or 207 pounds (n = 63 players). The results are listed below:
Weight | 40-yd | Bench | Vert | Broad | 3Cone | 20ss | |
---|---|---|---|---|---|---|---|
Predicted | 206.6 | 4.527 | 17.301 | 35.157 | 119.039 | 6.957 | 4.225 |
Actual (Avg.) | 205.9 | 4.534 | 18.861 | 35.402 | 118.982 | 7.018 | 4.215 |
From the data above, we see that these equations do an excellent job of predicting combine performance for a given player's size. Using these equations, I was then able to assess how well a player's actual performance differed from their predicted performance. Players performing better than their expected combine numbers in a given event received a positive score for that event (weighted according to the dynamic range of the particular skill being measured), and conversely, players performing worse than their expected combine numbers for a given event received a negative weighted score for that event. Specifically, the scores for each player for any particular event was obtained using the following formulas:
40 = -(Observed - Expected)/(Range)
Bench = (Observed - Expected)/(Range)
Vertical = (Observed - Expected)/(Range)
Broad = (Observed - Expected)/(Range)
3-Cone = -(Observed - Expected)/(Range)
20ss = -(Observed - Expected)/(Range)
Range is defined as the upper limit of all combine performances for all wide receivers and running backs subtracted by the lower limit for a given event.
Wide Receiver and Running Back Ranks According to PACE
Taking the average scores across all events, I then obtained what I call my Performance Above Combine Expectations (PACE) score. This allowed me to rank all 1,091 wide receivers and running backs from 1999-2015 on the basis of their combine performances, with some of the notable names at the top five percent of all-time PACE scores listed below:
All-Time Top 50 | Â | Â | Â | Â |
---|---|---|---|---|
Year | Name | Position | PACE Score | All-time Rank |
2007 | Calvin Johnson | WR | 0.432 | 1 |
2001 | Chris Chambers | WR | 0.355 | 2 |
2003 | Justin Fargas | RB | 0.3428 | 3 |
1999 | Edgerrin James | RB | 0.288 | 6 |
2001 | Santana Moss | WR | 0.275 | 8 |
2010 | Demaryius Thomas | WR | 0.244 | 11 |
2014 | Jerick McKinnon | RB | 0.243 | 12 |
2013 | Christine Michael | RB | 0.221 | 14 |
2010 | Ben Tate | RB | 0.213 | 16 |
2008 | Chris Johnson | RB | 0.212 | 17 |
2015 | Jaelen Strong | WR | 0.206 | 20 |
2004 | Kevin Jones | RB | 0.205 | 24 |
2015 | Chris Conley | WR | 0.200 | 27 |
2015 | Ameer Abdullah | RB | 0.196 | 29 |
2011 | Julio Jones | WR | 0.187 | 37 |
2010 | C.J. Spiller | RB | 0.186 | 38 |
2008 | Donnie Avery | WR | 0.186 | 39 |
2015 | Sammie Coates | WR | 0.185 | 40 |
2003 | Andre Johnson | WR | 0.179 | 44 |
2012 | Ryan Broyles | WR | 0.175 | 46 |
2013 | Cordarrelle Patterson | WR | 0.174 | 48 |
Not surprisingly, Calvin Johnson was the top performer according to the PACE metric, achieving a score of 0.43, a figure nearly 25% greater than the second-best performer, wide receiver Chris Chambers.
Some other notable names at the top of this list include athletic freaks who have emerged recently as stars in the NFL, including Demaryius Thomas, Julio Jones, and C.J. Spiller, veterans that have shown long-term productivity in the league including the Colts franchise leader in rushing yards, Edgerrin James, Pro Bowl wideouts Santana Moss and Andre Johnson, and 2014 breakouts including Jerick McKinnon.
Predictive Value of the PACE Metric
To further test the validity of the PACE metric as a predictor of on-field success, I decided to do a case study of the 2011 rookie class. I chose this class because we have four seasons worth of statistics for this group of players that we can then use to assess the relationship between NFL productivity and combine metrics. I ranked every wide receiver and running back participating in at least four events of the 2011 combine by PACE score, and assessed their productivity for the past four seasons using Total Net Expected Points (NEP).
Below is the list of the top 25 players of the class of 2011 as ranked by the PACE metric, along with their total NEP for each season from 2011-2014, their average NEP per season, and their positional rank (percentile) according to NEP per season:
Year | Name | Pos | PACE Score | '11 NEP | '12 NEP | '13 NEP | '14 NEP | Avg NEP | RB Rk | WR Rk |
---|---|---|---|---|---|---|---|---|---|---|
2011 | Greg Little | WR | 0.1905 | 55.92 | 54.72 | 30.49 | 8.16 | 37.32 | - | 77.8% |
2011 | Julio Jones | WR | 0.1875 | 81.10 | 105.55 | 39.34 | 141.72 | 91.93 | - | 94.4% |
2011 | Torrey Smith | WR | 0.1593 | 75.36 | 76.45 | 97.73 | 80.96 | 82.63 | - | 91.7% |
2011 | Jordan Todman | RB | 0.1563 | 0.00 | -2.02 | 1.90 | 6.89 | 1.69 | 72.4% | - |
2011 | Aldrick Robinson | WR | 0.1503 | 0.00 | 24.16 | 31.45 | 0.48 | 14.02 | - | 61.1% |
2011 | Anthony Allen | RB | 0.1460 | -0.45 | 2.44 | 0.00 | 0.00 | 0.50 | 65.5% | - |
2011 | Edmond Gates | WR | 0.1440 | 2.45 | 20.76 | 6.83 | 0.00 | 7.51 | - | 38.9% |
2011 | DeMarco Murray | RB | 0.1305 | 22.51 | 3.21 | 39.45 | 23.54 | 22.18 | 96.6% | - |
2011 | Delone Carter | RB | 0.1190 | -25.36 | 8.46 | 0.00 | 0.00 | -4.23 | 24.1% | - |
2011 | Jon Baldwin | WR | 0.1139 | 21.46 | 25.17 | 2.14 | 0.00 | 12.19 | - | 55.6% |
2011 | Terrance Toliver | WR | 0.1056 | - | - | - | - | - | - | 0.0% |
2011 | Ryan Whalen | WR | 0.1033 | 1.92 | 4.89 | 0.00 | 0.00 | 1.70 | - | 22.2% |
2011 | Ricardo Lockette | WR | 0.0908 | 8.52 | 0.00 | 6.55 | 12.15 | 6.81 | - | 36.1% |
2011 | Mario Fannin | RB | 0.0811 | - | - | - | - | - | 0.0% | - |
2011 | Ryan Williams | RB | 0.0771 | 0.00 | -16.20 | 0.00 | 0.00 | -4.05 | 27.6% | - |
2011 | Cecil Shorts | WR | 0.0769 | 4.67 | 85.41 | 62.43 | 37.19 | 47.42 | - | 83.3% |
2011 | Kendall Hunter | RB | 0.0735 | 10.78 | 13.00 | -4.13 | 0.00 | 4.91 | 82.8% | - |
2011 | Niles Paul | WR | 0.0735 | 4.32 | 10.01 | 3.33 | 34.10 | 12.94 | - | 58.3% |
2011 | Greg Salas | WR | 0.0692 | 16.20 | 0.00 | 11.48 | 17.17 | 11.21 | - | 52.8% |
2011 | Austin Pettis | WR | 0.0581 | 17.94 | 30.61 | 46.51 | 13.74 | 27.20 | - | 75.0% |
2011 | Derrick Locke | RB | 0.0567 | - | - | - | - | - | 0.0% | - |
2011 | Roy Helu | RB | 0.0552 | 4.05 | 0.65 | 13.57 | 25.29 | 10.89 | 89.7% | - |
2011 | A.J. Green | WR | 0.0529 | 100.46 | 111.17 | 127.49 | 78.94 | 104.52 | - | 97.2% |
2011 | Shane Vereen | RB | 0.0522 | 2.40 | 18.27 | 37.55 | 29.61 | 21.96 | 93.1% | - |
2011 | Dane Sanzenbacher | WR | 0.0451 | 27.17 | 1.01 | 7.21 | 6.01 | 10.35 | - | 50.0% |
10 out of the top 25 players as ranked by PACE score had four-year NEP averages that placed them in the top 25th percentile of the 2011 class, including Pro Bowlers Julio Jones, A.J. Green, and DeMarco Murray, along with established starters such as Torrey Smith, Shane Vereen, and Cecil Shorts.
Conversely, 16 out of the bottom 25 players as ranked by PACE score had four-year NEP averages that placed them in the bottom half of the 2011 class:
Year | Name | Pos | PACE Score | '11 NEP | '12 NEP | '13 NEP | '14 NEP | Avg NEP | RB Rk | WR Rk |
---|---|---|---|---|---|---|---|---|---|---|
2011 | Owen Spencer | WR | 0.0013 | - | - | - | - | - | - | 0.0% |
2011 | Graig Cooper | RB | -0.0074 | - | - | - | - | - | 0.0% | - |
2011 | Stephen Burton | WR | -0.0111 | 3.36 | 3.87 | 3.73 | 0.00 | 2.74 | - | 25.0% |
2011 | Stevan Ridley | RB | -0.0130 | 2.44 | 13.11 | -13.28 | -1.38 | 0.22 | 58.6% | - |
2011 | Titus Young | WR | -0.0150 | 56.55 | 35.31 | 0.00 | 0.00 | 22.96 | - | 69.4% |
2011 | Darren Evans | RB | -0.0355 | - | - | - | - | - | 0.0% | - |
2011 | Tori Gurley | WR | -0.0386 | 0.00 | 0.00 | 3.24 | 0.00 | 0.81 | - | 19.4% |
2011 | Shaun Draughn | RB | -0.0399 | 0.00 | 2.59 | -1.54 | -4.11 | -0.76 | 44.8% | - |
2011 | Allen Bradford | RB | -0.0446 | -1.14 | 0.00 | 0.00 | 0.00 | -0.29 | 51.7% | - |
2011 | Jerrel Jernigan | WR | -0.0455 | 0.00 | 1.80 | 33.47 | 0.59 | 8.97 | - | 47.2% |
2011 | Vincent Brown | WR | -0.0484 | 29.50 | 0.00 | 41.05 | 7.74 | 19.57 | - | 63.9% |
2011 | Vai Taua | RB | -0.0494 | - | - | - | - | - | 0.0% | - |
2011 | Evan Royster | RB | -0.0495 | 18.68 | 1.50 | -2.29 | 0.00 | 4.47 | 79.3% | - |
2011 | DeAndre Brown | WR | -0.0510 | - | - | - | - | - | - | 0.0% |
2011 | Tandon Doss | WR | -0.0511 | 0.00 | 10.98 | 22.50 | 0.00 | 8.37 | - | 41.7% |
2011 | Armon Binns | WR | -0.0518 | 0.00 | 19.82 | 0.00 | 0.00 | 4.96 | - | 30.6% |
2011 | Dion Lewis | RB | -0.0545 | 1.62 | 5.10 | 0.00 | 0.00 | 1.68 | 69.0% | - |
2011 | Johnny White | RB | -0.0557 | -4.50 | -1.23 | 0.00 | 0.00 | -1.43 | 41.4% | - |
2011 | Dwayne Harris | WR | -0.0632 | 0.00 | 17.39 | 8.88 | 8.37 | 8.66 | - | 44.4% |
2011 | O.J. Murdock | WR | -0.0714 | - | - | - | - | - | - | 0.0% |
2011 | Randall Cobb | WR | -0.0730 | 31.46 | 98.04 | 40.95 | 118.03 | 72.12 | - | 88.9% |
2011 | Jacquizz Rodgers | RB | -0.1161 | 3.90 | 6.47 | 7.97 | 3.53 | 5.47 | 86.2% | - |
2011 | Lestar Jean | WR | -0.1302 | 0.00 | 14.06 | 7.85 | 0.00 | 5.48 | - | 33.3% |
2011 | Mark Ingram | RB | -0.1441 | 0.27 | -6.87 | -2.99 | 7.10 | -0.62 | 48.3% | - |
2011 | Matt Asiata | RB | -0.1877 | 0.00 | -2.00 | -1.84 | 11.45 | 1.90 | 75.9% | - |
Only four players, Randall Cobb, Matt Asiata, Jacquizz Rodgers, and Evan Royster, had four-year NEP averages placing them in the top 25th percentile of the 2011 class. To further emphasize the predictive value of the PACE metric to player performance, six of the players from this group actually failed to ever see regular season playing time in the NFL.
A closer look at the data reveals that 17 out of the top 25 players as ranked by the PACE metric ranked in the top half of their class according to their four-year average NEP score. In contrast, only 9 of the bottom 25 players achieved this same feat. For these bottom 25 players, there was instead an enrichment for those ranking in the bottom half of their class according to NEP per season, with 16 of these players clustering into this group:
Percentile Rank (Pos) | Â | Â | Â | Â |
---|---|---|---|---|
 | 100-75th | 75-50th | 50-25th | 25-0 |
PACE Score Top 25 | 10 | 7 | 3 | 5 |
PACE Score Bottom 25 | 4 | 5 | 9 | 7 |
In addition, the average NEP scores over the 2011-2014 seasons for the top 25 players as measured by PACE nearly tripled the average NEP scores for the bottom 25 players (23.7 vs. 8.7):
Group | Four Year Avg. of Total NEP |
---|---|
PACE Score Top 25 | 23.7 |
PACE Score Bottom 25 | 8.7 |
Through this analysis of the 2011 rookie class, we can see at multiple levels that players ranking near the top of the list according to PACE score have a strong tendency to have productive NFL careers, whereas players ranking near the bottom of this list (with a few rare exceptions) have a strong tendency to have either lackluster or even non-existent NFL careers.
Using the PACE Score to Assess the Incoming Class of 2015
So how does the running back and wide receiver class of 2015 stack up when we rank them based on the PACE metric? Below is the list of players clustering into the top 20 (or roughly top 25% of all skill position players) according to PACE score:Rookie Class of 2015 Top 20 | Â | Â | Â | Â |
---|---|---|---|---|
Year | Name | Pos | PACE Score | 2015 Rk |
2015 | Jaelen Strong | WR | 0.206064702 | 1 |
2015 | Chris Conley | WR | 0.199988665 | 2 |
2015 | Ameer Abdullah | RB | 0.195970932 | 3 |
2015 | Sammie Coates | WR | 0.184831338 | 4 |
2015 | David Johnson | RB | 0.163048363 | 5 |
2015 | Tevin Coleman | RB | 0.1492875 | 6 |
2015 | Kevin White | WR | 0.124324899 | 7 |
2015 | Antwan Goodley | WR | 0.121578947 | 8 |
2015 | Kenny Bell | WR | 0.110632442 | 9 |
2015 | Geremy Davis | WR | 0.105123048 | 10 |
2015 | Amari Cooper | WR | 0.104148538 | 11 |
2015 | Rannell Hall | WR | 0.10350315 | 12 |
2015 | Ty Montgomery | WR | 0.088294351 | 13 |
2015 | Tre McBride | WR | 0.082919086 | 14 |
2015 | DeVante Parker | WR | 0.08162597 | 15 |
2015 | Phillip Dorsett | WR | 0.081148093 | 16 |
2015 | Melvin Gordon | RB | 0.063459594 | 17 |
2015 | Jay Ajayi | RB | 0.056708064 | 18 |
2015 | Devin Smith | WR | 0.047593305 | 19 |
2015 | Michael Dyer | RB | 0.042384857 | 20 |
We see the appearance of some familiar, highly-touted NFL draft prospects on this list including Fred Biletnkoff Award winner Amari Cooper, Doak Walker Award winner Melvin Gordon, and projected first-rounders Kevin White and Jaelen Strong. But where it gets interesting is the presence of names on this list projected to be drafted in the fifth round or later, including Georgia Bulldog wideout Chris Conley and Louisville running back Michael Dyer. These players represent excellent value picks for NFL teams willing to take a chance on them in the upcoming draft.
If history serves as a guide for us, the players on this top 20 list have a high probability of being impact players for the NFL teams that draft them this upcoming April. And, in particular, a few of these aforementioned players -- who have all the athletic skills necessary to succeed at the NFL level -- may represent overlooked candidates with the potential to have careers that vastly outperform their NFL draft position.